2022/01/22

妄想トレイン 続編

  後編を書いて終わろうと思っていましたが、妄想が止まらないので続編を記します。D1040もキハ40000も気動車なので動力にエンジンを使ってはどうか、とこれは15インチゲージ鉄道を始めようと最初に考えた時から小型ガソリンエンジンが念頭にありました。もちろんその時は動力の伝達方法まで気が回っていませんでしたけど。内燃機関を動力源とする場合必ず考えないといけないのが変速機とクラッチ、逆転機のことです。小型バイクの部品を流用したと思われる(あくまでも想像です)モデルを見たことがあるので絶対に不可能というわけではありません。ただ、ちょうど良い部品が見つかったとしてもそれらを流用するために周辺部品を自作するのは費用、技術(道具、設備)、運用面でかなりの無理があるだろうと思われます。でも妄想するだけなら自由だし、お金も要りません。

線路脇の草刈り
 北海道の田舎に移住して色々な初体験をしましたが、その内の一つが庭の草刈りです。フキ、イタドリ、スギナ、タンポポやイネ科の雑草が短い夏に生命力を爆発させるかの如く、刈っても刈っても成長してきます。2サイクルエンジンの付いた肩掛け式草刈り機で刈り払うのが、冬の雪かきと同様にこの地での日課です。時々エンジンの清掃や調整で簡単な分解修理をすることもあるのでその構造はだいたいわかりました。数万円出せば新品が買えるし、汎用エンジン単体の販売もされています。実は農業用品の販売店で修理の請負をしているようなところがあって、そういう店裏の作業場へ行けばポンコツが転がっているので、事情を話せば選り取り見取りタダで分けてもらうことができるかも知れません。

 草刈り機は、エンジン起動と同時に回転刃が動き出すと危ないので、出力軸に遠心クラッチが内蔵されています。スロットルレバーを最小位置にしておけばクラッチが切れて軸は回転せず、レバーを引いてエンジンの回転数がある程度上がると出力軸が連れ回りを始めます。ただ、ガソリンエンジンの回転数-トルク特性と車両の走行特性がマッチするかが問題です。つまり一般論ですが、ガソリンエンジンからトルクを取り出せる回転数範囲(クラッチが繋がってから最大まで)は車両運転に要求される回転数より狭く、変速ギアやトルクコンバーターに類する機構を介してトルク特性を改善することが必要になってきます。この問題を解決するため、さらに妄想が膨らみます。

ディーゼルエレクトリックDF200
 我が家の裏には函館本線が走っていてまさに北海道の頸動脈、今や旅客輸送は風前の灯ですが、貨物輸送は頼もしくもその大役を担っていて” Red bear DF200”が先頭に立って毎日幾多のコンテナを満載した重量列車が函館方面へ勾配を駆け上って行きます。このDF200はディーゼルエレクトリックと呼ばれ、エンジンで発電機を回しモーターで動輪を駆動する電気式ディーゼル機関車です。ヒントはここにありますが、全く同じ方式ではありません。あくまでD1040かキハ40000の運転方法に似せた取り扱いで動かしたいと拘っています。キハ40000の場合は手前に引けばエンジンの回転数が上昇するスロットルレバーがあり、クラッチペダルとチェンジレバーで変速し、戻したスロットルをもう一度引くという動作を4(4)繰り返して加速していきます。つまり電車の加速と同じようにモーターと直列に接続した抵抗を抜くためにわざわざ疑似的に変速操作をするという実に面倒臭いことを企んでいます。D1040では電車のそれに似たコントローラーで3段加速し、充分な速度に達したら一旦ノッチオフにしてから変直切替レバーを「直」に入れ、再びフルノッチに戻して最高速まで加速することにすれば計4段となり、キハと同じ仕組みで動かすことができます。あとは運転台の機器(スロットルやコントローラー)を車種に合わせてそれらしく作れば楽しく運転できることになります。
キハ40000の動力伝達概念図

D1040運転台 床には足踏みブレーキもある                    
      コントローラー主ハンドルの右側(運転手から見て)が変直切替、左が前後切替
札幌市交通資料館
 下の実験動画をごらんください。同型のDCモーターの端子を互いに接続した状態で一方の軸を回転させると、発生した電力で他方のモーターが回転します。もうお分かりいただけると思いますが、エンジンで一方のモーターを動かして他方のモーターで車輪を駆動すれば車両が動くわけです。ただ単純にそうしただけでは過電流や速度の頭打ちが懸念されるので発電機とモーターの間に抵抗を入れ、速度に応じてそれを抜いていくという電車の制御と同じ方法をとるわけです。キハではチェンジレバーの位置で抵抗値が変わるようにし、D1040ではコントローラーのノッチでそれを行います。接点の切替だけで前後進が簡単にできるのも電車と同じです。

 ガソリンエンジンの回転を直接機械的に車輪に伝達する代わりに発電機とモーターを使うことであまり手間やコストを掛けずに気動車を製作することができそうです。悩みは2サイクルエンジンの甲高い排気音をなんとか腹に響くようなディーゼルエンジンの低音に変えることができないか、太鼓の皮を共鳴箱に貼り付けてエンジン軸に取り付けたバチで「ドドドド」と叩くのはどうかとか、またとめどない妄想が広がります。

2022/01/19

妄想トレイン 後編

  車体の妄想はどんどん膨らんでいきますが、事の発端が急曲線通過時の走行抵抗を低減しようということですから足回りを真剣に考えなければなりません。独立車輪付きの短軸距ボギーをどのように実現するか、さらに駆動軸の左右独立回転をどういう手法で解決するかが命題です。

独立車輪のバリエーション
 通常車軸は両端を軸受で支えられ、そこに2個の車輪が固定されて両輪は同じ回転数で転がります。左右の車輪が独立回転するためには何らかの方法で軸を左右分離するか、さもなければ一本の車軸に一方または両方の車輪が軸受を介して取り付けられる必要があります。一本軸の場合は図のようなバリエーションが考えられます。
BCでは付随車輪の場合機能的な差はありませんが、加工や材料のコストの面でBがまさっています。Dの車軸は回転する必要がなさそうに思えますが、台車枠に完全に固定されてしまうと台車の捩れが許容されず、軸バネの自由度もなくなってしまうので現実的ではありません。

 軸受は使用目的に応じて多くの種類があり、ここでは便宜的にそれらしく図示してありますが、形式によって取り付け方や寸法的制約があるので条件に適した軸受の選定と車輪側の寸法形状を検討する必要があります。すでに鹿部電鉄の無蓋車や電車の軸受として使用しているピローブロックは、深溝玉軸受と呼ばれるボールベアリングが取り付け穴付きの鋳物のハウジングに納められていてDIYで簡便に使用できる優れものです。一方玉軸受やコロ軸受(ローラーベアリング)をそのまま使用するには、取り付け部の寸法公差や固定(抜け止め)方法の決定などチョッとした機械設計の知識が必要になります。実物の鉄道車両には一般的に円錐コロ軸受が使用されますが、車両重量が二ケタくらい軽い上に速度も低い庭園鉄道ではもっとも汎用的な単列深溝玉軸受で充分に負荷を受けることができます。回転数や使用時間などタカが知れているので限界荷重や寿命の計算など難しいことは考える必要なく、退役技術者の頭の体操にはちょうどいい題材です。

独立車輪軸受の構造案




 既存の無蓋車、電車に合わせて車輪径はφ230、車軸径をφ35とします。ボス径はφ75あるので軸受を取り付けるのに充分な加工しろが確保できます。屋外使用、メンテフリーが必須条件になるのでグリス封入型を選定し、できるだけ工作機械による加工を少なくして市販部品を使うことでコストを抑えるように留意した構造を図に示します。



 さて、付随台車の独立車輪はこれで問題解決ですが、動力台車の差動滑り対策を立てねばなりません。考え方としては次の選択肢があります。

①自動車のようなデファレンシャルギア使用

Bタイプ独立車輪を使用して11輪駆動

③同上で2モーター使用22輪駆動

④同上で1モーター使用22輪駆動

実際問題として①を自作するには加工部品点数が多く、コスト面で自信が持てません。電動シニアカーの構造はよく知りませんが、中古品(スクラップ)の利用ができるようであればモーターやバッテリーを含めた流用が可能かもしれないので一考の価値があり、今後機会を見つけて調査しようかと思います。~③は図示の通りの構造になります。ボギー車で1輪駆動はやはり心もとないので②にもう1セット駆動軸を、というわけで対角上に動輪を配置したら③になります。2本の車軸は機械的に繋がっているわけではないので差動滑りは起こらないはずです。モーターを1個にするためにチェーンで両軸を繋いでしまうと元も子もありません。そこで動輪を片側に寄せて同じレールの上を走るようにしたのが④です。片側の車輪だけが摩耗するなどと心配していてはエンドレスの走行などできません。どうやらこれで急曲線の走行抵抗を可能な限り低減した庭園鉄道車両の理想像が浮かんできました。
 次に台車の妄想に移ります。2軸電車の単台車の軸受にはピローブロックを使用しました。実はピローブロック(軸受ユニット)にも多くの種類があり、目的や取付場所によってハウジングの材質や形状、サイズが選択できるようになっています。
ピローブロック(軸受ユニット)の種類 旭精工H.P.より

 注目はテークアップ型で、ハウジングの両側が溝になっていてペデスタル式(軸箱守式)台車を再現するのに打って付けなのです。ペデスタル式というのは比較的古いタイプの台車で用いられていた軸箱保持の構造で、軸受両側のガイドで上下方向のみに動きを与えてバネで振動を吸収するようになっているものです。以前からテークアップ型ピローブロックを使ってこの種の台車を作りたいと思っていたので渡りに船です。余分な部分を切り落として軸バネと組合せ、台車枠にはめ込むことで意外と簡単にそれらしく仕上げられそうです。札幌市D1040TS-115台車もキハ40000の菱枠型TR27(TR28)台車もペデスタル式なので最終判断で迷いそうです。 
  TS-115ペデスタル式台車         ペデスタル式菱枠型台車の妄想

2021/12/29

妄想トレイン 前編

  と言っても鉄っちゃん向けテレビバラエティ番組ではありません。独立車輪付きボギー車は急曲線の走行抵抗が小さくなるので庭園鉄道に適しているという結論を得て、それならどんな車両がいいかと考えたお話です。鹿部電鉄では翌春から本格的にエンドレス建設に力を注ぐことにしているので車両増備のためにマンパワーを割くわけにはいきません。その後と言うとまたまた年を重ねるので、元気で身体が思い通りに動く間にそんな車両を完成させることができるか甚だ疑問です。たぶん実際に製作することにはならないであろう車両なので、やりたい放題の仕様を盛り込み妄想を膨らませて楽しもうという魂胆です。屋外はすっかり冬景色になって雪かき以外の作業はお休み、スキーから帰ったら暖かい部屋でパソコン遊びに没頭します。

札幌市交通資料館に保存されているD1040
 大沼電鉄にボギー車は存在しなかったのでモデルの縛りはありませんが、やっぱり好きな車両にします。第一候補は「鹿部前史」(2020/10/8投稿)に書いた札幌市電のD10401964(昭和39)製、本邦唯一のディーゼル路面電車です。今日でも通用しそうな近代的スタイルは当時中学生だった私をその虜にしていましたが、北海道への撮影旅行の計画を裏切るかのように1971年に廃車されてしまいました。幸運にも札幌市交通資料館に保存されていて2010年に初対面を果たしました。遡って1979年の夏イギリスに長期出張した際にロムニー・ハイス・ダイムチャーチ鉄道に乗ったのですが、帰り道ロンドンの本屋で”Modern Tramway”という雑誌が棚いっぱいに並べられているのを見つけました。実はその雑誌に憧れのD1040の記事が図面と一緒に載っていることを知っていたので、片っ端から表紙の写真をチェックしてとうとうOctober/1966号を手に入れたのでした。その日は15インチゲージ鉄道の乗車体験よりD1040の図面が入手できたことで天にも舞い上がる気分を覚えました。今その図面で15インチゲージの車両の妄想をしているのは何かの因縁かもしれません。

Modern Tramwayに掲載されていた図面         

 全長13mのうち、窓2個分をカットし、中央の巨大両開きドアを片開きにして10mに短縮します。前面のパノラミックウィンドウをそのまま残せば、イメージを充分再現できます。台車の軸距は1600mmなので1/3より少しでも短く500mmにします。大きな空気バネに揺れ枕が目立ちますが、それらしくなんちゃって台車に仕上げるのは得意技です。車体は全体に丸みを帯びているのでカヌー製作技法が応用できます。車体断面の枠を台枠に固定し、外側に杉の薄板を貼り付け、最後にFRPで仕上げます。窓がはめ殺しなので窓枠を作る必要がなく、その点で手間が省けそうです。本来の扉もその幅では役立たずなのではめ殺してしまい、側板ごと開く「乗務員扉」を目立たぬように設けます。いや、両開きドアを復活した方がいいかな?

ショーティのイメージと車体の構造を妄想する

車内に乗り込めません
 一方でその魅力的な前面の造形をいかに再現するか、パノラミックウィンドウの成形、固定、方向幕と換気口の構造、屋根と裾の3D曲面成形など課題が山積みです。とはいえ、あれこれ考えることは楽しいし、いつ何時までに答えを出さないといけない仕事ではないし、失敗したからと言って誰かに責められるわけでもありません。ただ緊張感のない生活は認知症まっしぐらになりますから、頭と指(パソコン)はできるだけ使うように心がけます。そうやって1/3スケールの図面に私サイズのフィギュアを貼り付けてみると、、、、「アッチャーっ」。D1040は路面電車なのでやはり全体的に小ぶりなのでしょう、乗り込んで運転するには10~20%オーバースケールにしなければならないようです。
キハ40000 Wikipediaより

 もう一台の候補は国鉄キハ40000です。1934(昭和9年)製の11m級省型軽量ガソリン動車で、戦後キハ04~キハ06と呼ばれた兄貴分キハ41000機械式気動車の小型版です。このキハ41000も私の大好きな車両で、過去何度となく16(1/80)で模型化しています。キハ40000は貨車1両を牽引する余裕を持たせるために車体を小型化し、床下を有効に使う目的で台車の軸距も1800mmから1600mmに短縮されているので、急曲線庭園鉄道の車両選びというお題には最適のターゲットだと思います。しかも大沼電鉄と時代が合致するのでデ1と同じ線路に置いても違和感がありません。ただ残念なことにキハ40000は北海道には配属されなかったようです(キハ41000は実績あり)
             キハ40000         水島臨海鉄道キハ310
尾小屋鉄道キハ3運転台
鉄研OB富田さん提供
 機械式気動車は特殊な操作によって運転されることから、その運転方法や運転台の機器配置に深い興味を抱いていました。ガソリン機関もディーゼル機関も電動機のように停止状態からすぐに動くわけではありませんし、回転数範囲も限られているので減速機のギアを切替えなければならず、それゆえクラッチ操作が必要になります。作動原理は自動車と同じですが、機関出力に比べて車両重量が非常に大きいことや、黎明期の機器は熟練技を必要とするものが多くあったことから、乗用車の運転のように誰でもできるという簡単な話ではありません。車両の個体差(クセ)や運転技量によって振動や大きな音が発生することがあり
(いや大概はそうです)、いかに乗心地よく起動・加速するかスロットルとクラッチの操作に運転手は神経を使っていたのだと思います。スロットルはペダルを踏む車両があれば手でレバー操作する車両もあります。変速ギアレバーは運転席の右にあったり左にあったり、ブレーキ弁も機関車のように左手操作するものがあります。私が学生で全国の機械式気動車を乗り(撮り)歩いていた頃、車両ごとに操作方法を記録していたのですが、そのメモは今どこにあるのかわかりません。そんなわけで電車と同様に機械式気動車を自分の手で動かしてみたいと長年思っていました。

TR27の類似台車
元佐久鉄道キホハニ56
 その台車は帯鋼組立菱枠型という簡易軽量にして安定性(乗心地)、信頼性がともに高く、戦前戦後を通じて多くの気動車に使用されてきています。見た目からも明らかなように万力と金鋸とヤスリがあれば自作できそうな形状になっており、DIY本能が目を覚まして思わず身震いしてしまいそうです。実物の車体は半鋼製と言われ、側板と妻板は鋼板を溶接とリベットで組み立てたものです。それらしく作るには木製の骨組みにブリキかトタンを張り付けるなど、工法を検討する必要があります。こちらはスケール通りの車体の中になんとか乗り込めそうですが、多少オーバースケールにしたほうがいいかもしれません。
半鋼製車体の構造                 人体サイズ  
 
 後編は下ネタです。

2021/12/19

待避線(余談雑談) 鉄道用車輪の話 続編

車輪のテーパーとスラックの関係(再掲)

  前回説明した車輪とレールの間で発生した差動滑りと横滑りが走行抵抗に大きな影響を与える問題について、もう少し掘り下げて考えてみたいと思います。車輪踏面のテーパーに関しては鉄道雑学として書籍や博物館の展示などでよく解説されていますし、近年はブログや投稿動画でも取り上げられています。ただしその理屈が成り立つのは実物の鉄道でも半径が数百m以上の曲線の場合であって、路面電車が交差点を曲がる時や列車が駅に接近する時には急カーブを通過せざるを得ない場面があり、そんな時に「チュイーンチュイーン」というカン高い音を発して車輪が滑っていることを感じ取ることができます。最新鋭の電車では自己操舵台車が導入されて速度・乗心地の向上や騒音の低減などが実用化されているようですが、実は鉄道の曲線通過のメカニズムの詳細は完全には解明されておらず、音の発生源についても諸説あるようです。

 15インチゲージの庭園鉄道を模型と考えるか実物の鉄道の一種と見なすかは場面によって異なり、大きさ以外の基本的な機構や走行原理はどちらも同じですが、こと曲線に関して言えば、庭園鉄道ではそのほとんどが急カーブで占められているのに対して、多くの実物の鉄道では駅や車庫などの構内に例外的に存在しているのが実情です。その結果、車輪のテーパーの理屈と同様に必ずしも実物の鉄道での一般的な知見や常識が通用しないことが多々あります。実物の鉄道では旧国鉄の鉄道技研(後の鉄道総合技術研究所)が各種条件(速度、車両重量、曲線半径、勾配等)の下で走行抵抗や脱線限界などを実験調査して定量化(数式化)しており、その結果を庭園鉄道にそのまま適用はできないものの、傾向を窺ったり定性的な判断基準に応用したりすることは可能です。一方で偶然見つけたのですが、林業試験場(旧農林省管轄と思われる)が「森林鉄道貨車の走行抵抗」という研究成果報告論文 (昭和30年代)を発表しています。こちらは762mm(30インチ)ゲージで軸距や車輪径、軸受構造などが庭園鉄道により近く、おおいに参考になる内容が含まれています。この研究では運材車の構造や荷重、曲線半径、勾配の他、線路が乾燥しているか濡れているかなど各種の条件で走行抵抗が測定されています。現在のように便利な計測機器のない時代に苦労と工夫を凝らして解析がされており、大変興味深い内容になっています。
林業試験場発表論文
 その中でも庭園鉄道に取り入れられないかと気になるのが「単独軸型貨車」の記述です。一般的な車軸で両輪が繋がった「2軸型貨車」に対して、前後左右の4輪がそれぞれ個別の短い車軸で支持されたもので、差動滑りが発生しないという特徴を持っています。実験の結果は期待通りで、特に曲線半径が30m以下になると走行抵抗の増加を抑える効果が顕著になると記されています。ところが別の文献で、単独軸の場合は一方の線路に偏って走行するために車輪の片減り(偏摩耗)が発生する、と書いてあります。両輪が固定されて踏面がテーパーになっている一般的な車輪の場合は直線路で長周期の蛇行が起こり、車輪が均等に摩耗する効果があるからだそうです。直線路で偏摩耗が起こるという単独軸の欠点は庭園鉄道では全然問題になりません。なぜなら、少なくとも鹿部電鉄では全線が計画通りに完成した時点で直線と曲線の延長比率は46であり、そもそも長周期蛇行が発生するほどの長い直線区間はありませんし、日常の気まぐれ運転では車輪の摩耗なんて考えたこともありません。となると6割を占める曲線で走行抵抗が小さくなるメリットの方が、はるかに大きな期待が寄せられるべきではないかと思います。
通常の軸受け(左)と単独軸受(右)
林業試験場論文より
 運材車の単独軸では、図のように両端が台枠に固定された短い軸に車輪がローラーベアリングを介して取り付けられていて、4個の車輪はそれぞれが自由に回転します。念のために、軸は固定されていて首振りをするわけではないので、仮にレールがない状態で押すと直進します。また、両端固定の長い軸に自由回転できる2個の車輪を取り付けても同じ効果が得られますし、同様の構造でボギー台車を作ることも可能です。運材車や貨車のような付随車の場合はこれで差動滑り問題が解決できますが、動力車の駆動軸の場合はチョッと厄介です。まじめに考えると自動車のデファレンシャルギアが必要になってきます。

 大型鉄道模型メーカーのモデルニクスホームページでは、詳細はわかりませんが独立回転車輪が使用されていることが記されています。パワートラック(動力台車)の説明には「急曲線用に左右独立差動駆動になっています。カーブに入ると外側車輪は増速し、内側車輪は減速して、直線と同じ速度を保ちます。」とあります。

 世の中には違う目的で同じことを考えている人がいるもので、超低床路面電車では車内の床を低くするために車軸をなくした独立車輪が実用化されています。この電車では左右の車輪が別のモーターで駆動されて機械的に独立している一方、回転数やトルクの差を個別に制御しているそうです。

 差動滑りと並んで急曲線では横滑りが大きな走行抵抗の原因となります。前にも書いた通り固定軸距が長いほど、また曲線の半径が小さいほど、レールの向きと車輪の向きのなす角度(アタック角)が大きくなり横滑りが顕著になります。ボギー車の走行抵抗が四輪単車より小さいのは固定軸距が短くなるからで、さもなければ軸数が増えた分だけ抵抗も倍増してしまいます。図に軸距とアタック角の関係、アタック角と横滑りの関係を示しています。横滑りは、車輪が本来転がろうとする方向とレールの形状に沿って進む実際の動きが異なるために、フランジがレールに押されて発生するものです。後輪側では内側のレールに沿ってフランジを押す力が働きます。

アタック角と横滑りの関係

 ということで、その多くが急曲線で占められる庭園鉄道では、単独軸車輪(独立車輪)を使用して差動滑りを回避することができ、また軸距を短くして横滑りを低減すれば、走行抵抗を小さくすることが期待できます。ボギー台車では必然的に固定軸距が短くなるため、独立回転車輪と組み合わせると大きな効果を得ることができます。ただし、駆動軸の差動滑りを解決する具体的方法が検討課題として残ります。

車輪とレールの動きを
目の当たりに観察する
 鹿部電鉄を計画していた段階では、こんなことは想像もしていませんでした。実際にトロッコ遊びをしていて、S字カーブを通過する時に車輪のフランジが交互にレールに接触すると抵抗が大きくなり、速度が落ちるのを見てなるほどと感心したものです。制御器に電流計を取り付けると、カーブでモーターに負荷がかかっていることが目に見えました。半径4mの曲線では徐々に速度が低下しながらも粘り強く耐えている様子がわかります。これらは自身で鉄道を作ってこその貴重な体験だったと思いますし、机上の知識を物理現象として体感的に理解し、問題を解決したり新たな展開を導いて行く力になると信じています。

 余談の余談になりますが、2021/1/27投稿の「ラジアルトラックという2軸台車」では曲線部で車両にかかる遠心力を利用して前後輪が舵を切る機構について書きました。これもアタック角を小さくすることで急曲線の走行抵抗を低減しようとするものでした。またドイツを始めヨーロッパの路面電車では多くの3軸車が1930年頃から建造され2000年頃まで現役で稼働していました。原理的にはボギー台車に近い構造で、写真を添えておきます。どちらも見るからに複雑で修理やメンテナンスに手こずりそうです。日本に輸入されたラジアルトラックは結局ほとんどが固定軸に改造されてしまいましたが、わざわざまとまった数量を輸出したということは製造元のイギリスではそれなりの信頼性が確立されていたはずです。3軸車に至っては500両以上が製造されたとのことですが、日本には存在しません。コピー生産が得意の日本でもチョッと真似できなかったのでしょうか?

ミュンヘン市電の3軸台車   と       舵取り作動原理図 
Wikipediaより

2021/12/15

踏切(併用軌道)の落し穴

  前々回の投稿で分岐の先にエンドレスの一部となる線路を延長したことを書きました。ここは道路から母屋の玄関に至る通路を横切るので、その後レールの間に敷石を置いて踏切(併用軌道)にしました。その構造は20201225日投稿の「ご近所パワー」に図示してあります。今回は曲線であるためレールとコンクリートタイルの間のスペーサーとなる木材が直方体ではなく加工に時間を要しました。

新設踏切

 ようやく完成したこの区間に電車を乗り入れたところ、フルノッチにもかかわらず急激に速度が低下してモーターが唸り、ノッチを戻すと同時に「ガクン」と停止してしまいました。逆転レバーを回してノッチを入れると少し動いてまた止まってしまいます。敷石を入れる前は急カーブで喘ぎながらもがんばって走っていたので明らかに何らかの異常が発生しているようでした。結局手押しで脱出しましたが、何かが引っかかっているのだろうと思うほど抵抗があり、直線部分まで戻るとウソのように軽くなりました。


スペーサー上に残った2条の黒いスジ
曲線の外側が前輪、内側が後輪の跡
 その日の原因究明は日没終了。翌日スペーサーの上面に2条の黒い筋が付いているのを見つけました。クリ材やアカシア材は鉄に触れた後雨や朝露で濡れると黒く変色するのですが、これは明らかに前後輪それぞれのフランジがスペーサーに接触した痕跡です。同じ変色は直線部に敷石を置いた時にも起こっていましたが、走行抵抗が大きくなるようなことはありませんでした。路面電車が溝付きレール上をフランジ外周で走行することがありますが、それも異常なことではありません。実はこのような急曲線では差動滑りや横滑りが発生しているのですが、木製のスペーサーと鉄製車輪の間の摩擦係数は鉄同士のそれより極端に大きく、車輪が前に進むとこれらの摩擦力が発生し、異常な走行抵抗となって現れていたと想像されます。

 差動滑りと横滑りについては2021/5/22投稿「鉄道用車輪の話」に書いていますが、あらためて説明すると以下の通りです。鉄道用車輪のように一本の軸で固定されている左右の車輪が曲線を通過しようとすると外側の車輪は内側より長い距離を走行しなければならないため、踏面にテーパーを設けて外輪がレールと接する部分の直径が内輪より大きくなるように工夫されています。ところがその前提を越えるような急曲線を通過しようとすると内外輪のいずれか(あるいは両方)とレールの間に回転滑りが生じ、また直進しようとする車輪をレールに沿って曲がらせるために横滑りが発生することになります。

 今回の、木製スペーサーとフランジ外周が接触して走行抵抗が想定外に大きくなった事象は、スペーサーを削って厚さを減じることで解決しました。

 それにしても急曲線は庭園鉄道の宿命です。とはいえ実物の鉄道で国内最急は豊橋鉄道市内線の半径11mですから1/3にすると約3.7mで、半径4m5mは現実にはあり得ないと言うほどの急カーブでもなさそうですし、森林鉄道ではもっと急なカーブもあったようです。通過可能な曲率は固定軸距や軸重、軸バネの有無など台枠や台車の構造の他、レールの表面状態(水平、凹凸や潤滑)などによっても影響を受けるので一概に決められるものではありませんが、限界を超えるとフランジがレールに乗り上げて脱線してしまいます。単に走行抵抗が大きくなると言うだけの問題ではありません。

色づく秋の風景

2021/12/08

レールの保管について

  レールの運搬にはトラックチャターが必要になるためまとめて購入しないと単価が割高になることを書きました(202010月投稿「レールの調達」)2014年春に20(55m)購入してその年に10本を敷設し、残りは庭の片隅に並べて保管していました。雨ざらしですが、そもそも線路は屋外に設置されるもので錆びたからと言って使えなくなるはずはありません。と、思っていました。

 ところが5年以上保管していたレールを使って分岐器を作ることになり、あらためてレールの表面を観察してみると、ずっと使用してきたレールとは異なって凹凸が目だっていることがわかりました。これもワイヤーブラシで擦り取れば平らになると思っていました。酸化で体積が増えた錆が表面に付着しているのならその通りですが、錆が盛り上がっているのではなく、腐食で斑点状に肉がえぐれていたのでした。また安易にグラインダーで削り取ることを思いつきましたが、腐食していない表面は製造時の熱変化で硬化していて砥石が滑るので簡単には削れないことがわかりました。たった5年放置していたレールですが、山中で何十年も眠っていた森林鉄道の廃レールにも似た状態でした。ただ踏面が下に向いた状態で保管されていたレールの腐食は幾分軽症でした。

 5年間雨ざらし保管したレールの発錆状況  右の写真は踏面を下に保管していたもの 

線路として使用していたレール表面
 敷設済みのレールの側面や底面こそ同様に錆びて凹凸表面が目だつ部分もありますが、毎日とは言わずも数日おきに車輪が転がって行くレール上面は腐食が進行しないのでしょうか。時々曲線部に塗布する潤滑油が広がってきて防錆効果があったのかもしれません。

 無駄とは思いながらワイヤーグラインダーで出来る限り錆落としをして分岐器に使用しました。まぁそれが原因で脱線や走行不良、騒音の異常な増大が起こるわけではないので今後気を付けることでケリとしました。対策としては、購入したらできるだけ早くクリアラッカーを吹いておく、最低でも頭部、できれば側面、底面も処理しておくことが望ましいと思われます。保管場所は雨のかからないガレージなどがよいのでしょうが、長さと重量があるので縁の下などは出し入れの方法を工夫する必要があります。初めてレールが届いた日、鉄紺色で断面に角が立ったその姿に見惚れて頬ずりしたことを思い出し、あらためてこの世の無常を悟りました。

ワイヤーグラインダーで錆落とした敷設直後のレール(左)と運行で表面が幾分平らになった後の状態(右)

2021/11/29

分岐器を作る 第6編

 (10)線路延長工事(曲線路の敷設)

 無蓋車と電車の試運転結果が想像以上に良かったので、エンドレス側に線路を延長することにしました。フログから1mほどしかなかったので車両の留置さえもできず、このままでは分岐器を新設した意味がありません。線路がY字型になると入れ替えができるようになり、電車ごっこも俄然面白くなりそうです。5.5mの未使用レールが3本残っていて、既設線路から外した1本と合わせると10mくらいの敷設が可能です。分岐の先は半径5mの曲線で約90°曲がって直線が延びる予定です。レールベンダーでは分岐器の一部のレールを曲げましたが、定尺の全長に亘って一定の曲率に加工するのは初めての経験です。

 敷設に先だって線路用地の測量をします。分岐の先端から直角に線を引き、5m先に10mm角の杭を打ち込んで曲線路の中心にします。この杭にヒモを掛け、4.5m5.5mの位置に小さな輪っかを作り、そこに差し込んだ棒をコンパスにして尖った先で地面に1m幅の線路用地を描きます。この作業は順調に進みましたが、用地の先には白樺の大樹が立ちはだかっているではありませんか。全体計画図ではこの白樺をうまくかわしてガレージの後に到達するはずです。何度も計画図と実際の測量結果を見比べてみると、どうやら分岐器先端の直線部が1mほど長すぎたことがわかりました。計画図ではほぼフログあたりから曲線が始まることになっていました。計画段階では基本的に曲線半径を5mとしていましたが、この問題を回避するには特例として半径を4mにするしかありません。あらためて中心の杭を打ちなおして半径3.5m4.5mの用地境界線を描き直しました。

計画と実際の線路の食い違い

 幅1mというのは道床(砂利)のことで、地面を掘り込みます。傾斜地を進むにつれて路盤は地面から出てきて曲線の最後の方の道床は見慣れた台形断面になり、その先さらに地面は低くなって盛土の路盤に続きます。ここまで来て砂利のストックが底を尽きそうになったので路盤と道床の造成は一旦打ち切り、線路の敷設に取りかかることにしました。前述の通り定尺レールの曲げ作業が待っています。

定尺レール曲げ作業時のテーブル配置
 レールを地面に置いてレールベンダーで曲げ作業を行うことが、高齢者にとって大変な苦行であることが想像いただけるでしょうか?レールの斜め切り、車庫建設、土木造成作業など老体に鞭打ってかなりの無理をしてきましたが、作業意欲の醸成という観点からレールベンダーの設計と並行してDIY環境整備をしていました。適正な高さにレールベンダーを置く頑丈なメインテーブルと余分なレールを支えるサブテーブル2台を予め作ったのでした。サブテーブルは曲げる位置によって、両側に置いたり片側に2台並べたりと機動的に移動できるようにします。当初レールベンダーはメインテーブルに固定していましたが重量があるので動き回る心配はなく、ある位置の曲げが終わって次の位置にレールを送る際に固定されていない方が使いやすいことが作業中に判明して固定用ネジは抜き取りました。

 連続して一定の半径の曲線になるようにレールを曲げるにはどうすればよいか?送り量を変えて試してみました。つまり、一ヶ所の曲げ作業が終わった後レールベンダーのスパンである500mm送って次の曲げ作業をする場合と、半分の250mm送って曲げる場合で仕上がりにどのような差が出るかを比較しました。結果、500mm送った場合レールの形状は図のようにいびつな曲がりになるのに対して、250mmでは見た目滑らかな曲線になることがわかりました。これは理論的にも説明ができ、ラムで押される中央部は曲げモーメントが最大になって曲率が最大(半径が最小)になり、フックの部分はモーメントが0になるので全く曲がらない(直線のまま)ために起こる現象です。スパンの半分だけ送った場合も場所によって多少曲率の変化はあるのですが、それは厳密な測定をしないかぎりわからないということです。

レール曲げにおける送り量と仕上がりの関係

 レールベンダーのラムでどれだけ変位を与えれば最終的に半径4m(または5m)になるか、これは事前の理論式での近似計算によって、7mmの変位で半径が約5.5mになる予測をしていました。250mm送りの実測の結果では、9mmの変位を与えると半径が約4mとなりました。とはいえ大雑把な話で、曲線の内側と外側の15インチ(0.4m)の差を意図的に作り出すことは難しく、曲げ終わった2本のレールを見比べて曲率の大きい(半径の小さい)方を内側にしてゲージを計りながら修正する方法を採りました。

久しぶりの線路延長でした

 テーブルの導入によって、修正を含めて50ヶ所以上に及ぶ曲げと送りを繰り返す作業は想像以上に順調に進めることができました。こうやって曲げたレールを道床の上に並べた枕木の上に置き、犬釘で固定して砂利を入れる手順はこれまでと同じです。完成した線路に電車を乗り入れると世界が広がったような感覚がし、あらためて庭園鉄道を自宅に持つ喜びがこみ上げて来ました。ここまでに撮りためた写真や動画を編集し、「分岐器製作大作戦」としてYouTubeにアップロードしました。最後の方にテーブルを使ってレールを曲げる作業の様子が映っています。


 以上をもって「分岐器を作る」を完結します。